Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709212

RESUMO

PURPOSE: The Antibody-Drug Conjugate (ADC) Sacituzumab govitecan (SG) comprises the topoisomerase 1 (TOP1) inhibitor SN-38, coupled to a monoclonal antibody targeting trophoblast cell surface antigen 2 (TROP-2). Poly (ADP-ribose) polymerase (PARP) inhibition may synergize with TOP1 inhibitors and SG, but previous studies combining systemic PARP and TOP1 inhibitors failed due to dose-limiting myelosuppression. Here, we assess proof-of-mechanism and clinical feasibility for SG and talazoparib employing an innovative sequential dosing schedule. PATIENTS AND METHODS: In vitro models tested pharmacodynamic endpoints, and in a phase 1b clinical trial (NCT04039230) 30 patients with metastatic Triple-Negative Breast Cancer (mTNBC) received SG and talazoparib using a concurrent (N=7) or sequential (N=23) schedule. Outcome measures included safety, tolerability, preliminary efficacy and establishment of a recommended phase 2 dose (RP2D). RESULTS: We hypothesized that tumor-selective delivery of TOP1i via SG would reduce non-tumor toxicity and create a temporal window, enabling sequential dosing of SG and PARP inhibition. In vitro, sequential SG followed by talazoparib delayed TOP1 cleavage complex clearance, increased DNA damage and promoted apoptosis. In the clinical trial, sequential SG/talazoparib successfully met primary objectives and demonstrated median PFS of 7.6 months without Dose-Limiting Toxicities (DLTs), while concurrent dosing yielded 2.3 months PFS and multiple DLTs including severe myelosuppression. CONCLUSIONS: While SG dosed concurrently with talazoparib is not tolerated clinically due to an insufficient therapeutic window, sequential dosing of SG then talazoparib proved a viable strategy. These findings support further clinical development of the combination and suggest that ADC-based therapy may facilitate novel, mechanism-based dosing strategies.

2.
Oncologist ; 28(4): 358-363, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36772966

RESUMO

The absence of effective therapeutic targets and aggressive nature of triple-negative breast cancer (TNBC) renders this disease subset difficult to treat. Although estrogen receptor beta (ERß) is expressed in TNBC, studies on its functional role have yielded inconsistent results. However, recently, our preclinical studies, along with other observations, have shown the potential therapeutic utility of ERß in the context of mutant p53 expression. The current case study examines the efficacy of the selective estrogen receptor modulator tamoxifen in p53-mutant TNBC with brain metastases. Significant increase in ERß protein expression and anti-proliferative interaction between mutant p53 and ERß were observed after cessation of tamoxifen therapy, with significant regression of brain metastases. This case study provides supporting evidence for the use of tamoxifen in p53-mutant, ERß+TNBC, especially in the setting of brain metastasis.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Receptor beta de Estrogênio/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...